

17 International Multidisciplinary Scientific GeoConference SGEM 2017

27 June - 6 July, 2017

Partial replacements of conveyor belt loop analysis with regard to its reliability

SCIENCE AND TECHNOLOGIES IN GEOLOGY, EXPLORATION AND MINING

SGEM Scientific Scope HR EXCELLENCE IN RESEARCH

Politechnika Wrocławska

Presentation plan

- SGEM Scientific Scope
- Damage identification problem: inspection v monitoring
- Research problem how to fix the detected segment damage
- 1. New connection at fault site (short loop)
- 2. New small insert and 2 additional connections
- 3. New, longer insertion and 2 additional connections
- 4. New, large insert to the shore with the replacement of the old connection
- 5. Reliability of belt loops and reliability of a single section
- Non-linear belts wear rate

Mirosław Bajda, Ryszard Błażej, Leszek Jurdziak 🔹

The problem of fault identification

The visual inspection is:

- subjective,
- not measurable and therefore inaccurate

No recording can not assess the damage and increase their changes over time

Assessment using diagnostic equipment:

SGEM Scientific Scope

Politechnika Wrocławska

- Objective, precise and quantified,
- Accurate and reproducible,

Allows us to observe changes in belt state over time

Mirosław Bajda, Ryszard Błażej, Leszek Jurdziak

PBS/

Politechnika Wrocławska

Mirosław Bajda, Ryszard Błażej, Leszek Jurdziak

The research problem

- Damage to the belt section has been identified, requiring replacement of a portion of the belt
- The repair can be done by removing the damaged part and:
 - 1. performing in its place a new connection
 - Limitations: small size of damage and large stock of belt in the tensioning device

L_{bs}=150

L_{br}=150

- The result: a new, additional connection and shortened belts loop
- 2. Inserting a new short segment into its place
 - Effect: new, small insert and 2 additional connections
- 3. Removing adjacent, but unused portions and giving in their place longer, a new section
 - Effect: new, longer insertion and 2 additional connections
- 4. The remainder of the belt section to the nearest conection
 - Effect: new, big insert with replacement of old connector for new and 1 new connection
- Corrective actions have consequences
 - Positive: removed threat, increased reliability of repaired belt section
 - Negative: decrease of reliability of the segment after adding the connections the weakest link in the belt loop !!!

L_{bs}=150

L_{bs}=150

Lbc=150

L_{hs}=150

Scope

PBS/

Partial replacements of conveyor belt loop analysis with regard to its reliability 4. New, large insert to the edge with the replacement of the SGEM Scientific Scope old connection **Reliability belt section** $\boldsymbol{R_{nbs}}_{4}(t) = \boldsymbol{R_{oj}}(t)\boldsymbol{R_{obLbo}}(t)\boldsymbol{R_{nj}}(t)\boldsymbol{R_{nbLbn}}(t)\boldsymbol{R_{nj}}(t)$ Insert 50m, elimination of 1 splice + 2 new splices Przeciecie 3-4 linek łata-zale cane wykonanie złącza Przecięcie 3-4 linek Przecięcie 3-4 linek Przecięcie 3-4 linel 3 830 3 8 40 3 860 3 870 3 890 3 900 3 850 3 880

PBS

В

Mirosław Bajda, Ryszard Błażej, Leszek Jurdziak

Politechnika Wrocławska

Reliability of loop loops and reliability of a single section

2. Reliability of the insertion section in the middle

 $\boldsymbol{R_{nbs}}_{2}(\boldsymbol{t}) = \boldsymbol{R_{oj}}(\boldsymbol{t}) \boldsymbol{R_{obLl}}(t) \boldsymbol{R_{nj}}(\boldsymbol{t}) \boldsymbol{R_{nbLm}}(t) \boldsymbol{R_{nj}}(\boldsymbol{t}) \boldsymbol{R_{obLr}}(t) \boldsymbol{R_{oj}}(\boldsymbol{t})$

 $L = L_1 + L_j + L_m + L_j + L_r$

 $R_{nbs_2}(t) = \frac{R_{nj}^2(t+T_0)R_{nbLl}(t+T_0)R_{nj}(t)R_{nbLm}(t)R_{nj}(t)R_{nbLr}(t+T_0)}{R_{nj}^2(T_0)R_{nbLl}(T_0)R_{nbLl}(T_0)R_{nbLl}(T_0)}$

 $R_{nbs_2}(t) = \frac{R_{nj}^2(t+T_0)R_{nbL-Lm}(t+T_0)R_{nj}(t)R_{nbLm}(t)R_{nj}(t)}{R_{nj}^2(T_0)R_{nbL-Lm}(T_0)}$

Mirosław Bajda, Ryszard Błażej, Leszek Jurdziak

SGEM Scientific Scope

L_{bs}=150

Reliability of loop loops and reliability of a single section

4. Reliability of the section with insert to the edge

 $\boldsymbol{R_{nbs}}_{4}(t) = \boldsymbol{R_{oj}}(t)\boldsymbol{R_{obLbo}}(t)\boldsymbol{R_{nj}}(t)\boldsymbol{R_{nbLbn}}(t)\boldsymbol{R_{nj}}(t)$

$$\boldsymbol{R_{nbs}_4}(t) = \frac{\boldsymbol{R_{nj}(t+T_0)}\boldsymbol{R_{nbLo}(t+T_0)}\boldsymbol{R_{nj}(t)}\boldsymbol{R_{nj}(t)}\boldsymbol{R_{nj}(t)}\boldsymbol{R_{nj}(t)}\boldsymbol{R_{nj}(t)}\boldsymbol{R_{nj}(t)}\boldsymbol{R_{nj}(T_0)}\boldsymbol{R_{nbo}(T_0)}$$

Mirosław Bajda, Ryszard Błażej, Leszek Jurdziak

SGEM Scientific Scope

L_{bs}=150

Partial replacements of conveyor belt loop analysis with regard to its reliability Non-linear belt wear rate

- SGEM Scientific Scope We propose replacing the expected working time (calendar or effective) of the belts and connections for the expected time to reach the limit of damage density
- identified and verified during regular (cyclic or continuous) belt loop scanning.
- The remaining working time of the belts or joints can be corrected based on actual wear and tear - individual wear rate trajectories can be compiled on actual data and for a specific conveyor operating under specified conditions, which is more accurate than the remaining working time statistically determined for calendar time

Mirosław Bajda Ryszard Błażej Leszek Jurdziak

Funding from NCBiR grant No. PBS3/A2/17/2015 Politechnika Wrocławska

